Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells.

نویسندگان

  • Ning Wang
  • Iva Marija Tolić-Nørrelykke
  • Jianxin Chen
  • Srboljub M Mijailovich
  • James P Butler
  • Jeffrey J Fredberg
  • Dimitrije Stamenović
چکیده

The tensegrity hypothesis holds that the cytoskeleton is a structure whose shape is stabilized predominantly by the tensile stresses borne by filamentous structures. Accordingly, cell stiffness must increase in proportion with the level of the tensile stress, which is called the prestress. Here we have tested that prediction in adherent human airway smooth muscle (HASM) cells. Traction microscopy was used to measure the distribution of contractile stresses arising at the interface between each cell and its substrate; this distribution is called the traction field. Because the traction field must be balanced by tensile stresses within the cell body, the prestress could be computed. Cell stiffness (G) was measured by oscillatory magnetic twisting cytometry. As the contractile state of the cell was modulated with graded concentrations of relaxing or contracting agonists (isoproterenol or histamine, respectively), the mean prestress ((t)) ranged from 350 to 1,900 Pa. Over that range, cell stiffness increased linearly with the prestress: G (Pa) = 0.18(t) + 92. While this association does not necessarily preclude other interpretations, it is the hallmark of systems that secure shape stability mainly through the prestress. Regardless of mechanism, these data establish a strong association between stiffness of HASM cells and the level of tensile stress within the cytoskeleton.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models of cytoskeletal mechanics based on tensegrity

Cell shape is an important determinant of cell function and it provides a regulatory mechanism to the cell. The idea that cell contractile stress may determine cell shape stability came with the model that depicts the cell as tensed membrane that surrounds viscous cytoplasm. Ingber has further advanced this idea of the stabilizing role of the contractile stress. However, he has argued that tens...

متن کامل

Contractile prestress controls stiffening and fluidization of living cells in response to large external forces

We report the simultaneous characterization of timeand force-dependent mechanical properties of adherent cells in the physiologically relevant regime of large forces. We used magnetic tweezers to apply forces to magnetic beads bound to the cytoskeleton, and recorded the resulting deformation (creep response). The creep response followed a weak power law at all force levels. Stress stiffening an...

متن کامل

Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness.

This study aims at improving the understanding of mechanisms responsible for cell sensitivity to extracellular environment. We explain how substrate mechanical properties can modulate the force regulation of cell sensitive elements primarily adhesion sites. We present a theoretical and experimental comparison between two radically different approaches of the force regulation of adhesion sites t...

متن کامل

Cell spreading controls balance of prestress by microtubules and extracellular matrix.

The controversy surrounds the cellular tensegrity model. Some suggest that microtubules (MTs) must bear a significant portion of cell contractile stress (prestress) if tensegrity is a useful model. Previously we have shown that for highly spread airway smooth muscle cells (areas>2500 microm2) MTs balance a significant but small potion (average 14%) of the prestress. To further explore if contro...

متن کامل

A microstructural approach to cytoskeletal mechanics based on tensegrity.

Mechanical properties of living cells are commonly described in terms of the laws of continuum mechanics. The purpose of this report is to consider the implications of an alternative approach that emphasizes the discrete nature of stress bearing elements in the cell and is based on the known structural properties of the cytoskeleton. We have noted previously that tensegrity architecture seems t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 282 3  شماره 

صفحات  -

تاریخ انتشار 2002